
J

JHOVE2: Next-Generation Architecture for Format-Aware Characterization
Architectural Overview
Version 0.11
Issued 2009-08-05
Status Draft

1 Introduction

JHOVE2 is a Java framework and application for next-generation format-aware characterization of digital
objects. Characterization is a form of representation information about a formatted digital object that is
indicative of its significant nature and is useful for purposes of classification, analysis, and use. JHOVE2
supports four specific aspects of characterization:

• Identification. The process of determining the presumptive format of a digital object on the basis
of suggestive extrinsic hints and intrinsic signatures, both internal (e.g. magic number) and
external (e.g. file extension).

• Validation. The process of determining the level of conformance to the normative syntactic and
semantic rules defined by the authoritative specification of the object's format.

• Feature extraction. The process of reporting the intrinsic properties of a digital object significant
for purposes of classification, analysis, and use.

• Assessment. The process of determining the level of acceptability of a digital object for a specific
purpose on the basis of locally-defined policy rules.

Additional information about JHOVE2 can be found on the public project wiki at
confluence.ucop.edu/display/JHOVE2Info/Home.

2 Architecture

The overall JHOVE2 architecture is defined in terms of three layers:

• Application. The JHOVE2 application is responsible for managing the interface presented to the
JHOVE2 user.

JHOVE2 is distributed with a single command-line application that accepts a list of names (files,
directories, URLs) and command options and displays formatted results. The command line
syntax is:

% jhove2 [-ik] [-b size] [-B Direct|NonDirect|Mapped]
 [-d JSON|Text|XML] [-f limit] [-o file] name ...

where –i specifies that the unique identifiers for each reportable property are shown;
 -k specifies that message digests are to be calculated;
 –b size specifies the I/O buffer size (defaults to 131072 bytes);
 -B specifies the buffer type: Direct (default), NonDirect, or Mapped;
 -d specifies the display form: JSON, Text (default), or XML;
 -f limit specifies the fail fast limit (defaults to 0);
 -o file specifies the name of an output (defaults to the standard output unit); and
 name is the file or directory name or URI to be characterized.

JHOVE2 Architectural Overview Page 1 of 25

http://confluence.ucop.edu/display/JHOVE2Info/Home

J

where square brackets [and] enclose optional elements; and a vertical bar | separates
alternative choices. The fail fast limit specifies the number of errors that JHOVE2 will report
before terminating the examination of a given object; the default value of 0 indicates that there is
no limit and that error reporting will be exhaustive.

• Framework. The JHOVE2 framework coordinates all JHOVE2 processing. In short, the

framework is presented with a list of names (files, directories, URLs) that are dispatched to
various modules for appropriate processing and results display.

Using the framework, the minimal JHOVE2 application is:

JHOVE2 jhove2 = Configure.getReportable(JHOVE2.class, “JHOVE2”);
jhove2.characterize(“file.ext”, ...);
jhove2.display();

which instantiates the JHOVE2 framework and uses it to characterize a list of named files,
directories, or URLs, and display the results in structured text form (as name/value pairs) to the
standard output unit.

• Modules. JHOVE2 modules are independent components that encapsulate specific processing
behaviors. (Technically, the JHOVE2 application and framework are also modules, but due to
their central role in JHOVE2 processing it is useful to consider them as conceptually distinct
levels.)

JHOVE2 uses the Spring Java enterprise platform (www.springsource.org) to manage module
instantiation. JHOVE2 is implemented in terms of the Spring philosophy of dependency
injection: all relationships between JHOVE2 components are defined in external configuration
files, not the Java source code, so they can be modified easily by a JHOVE2 user at the time of
installation or invocation. However, all Spring function is encapsulated in a single class
(org.jhove2.core.config.Configure); all other classes are POJOs (“plain old Java
objects”) that can be easily invoked in non-Spring contexts, if so desired.

All JHOVE2 components are defined as Spring beans in the configuration file jhove2-
config.xml.

The JHOVE2 framework is configured with three modules, which may in turn invoke subsidiary
modules:

o Characterizer module. The characterizer module embodies a specific characterization
strategy.

The unit of JHOVE2 characterization examination and reporting is known as a source
unit. A source unit can be an unitary entity such as a file or a bytestream within a file, or
an aggregate entity such as a directory; a file set, a set of unrelated files (for example, the
set of file names specified on the command line); or a clump, a set of related files that
form a coherent logical object (for example, a Shapefile, which is defined by at least
three independent files).

The strategy used by the Characterizer module in the standard JHOVE2 distribution is
(see Figure 1):

 Signature-based unitary format identification performed by a configurable

JHOVE2 Architectural Overview Page 2 of 25

http://www.springsource.org/

J

Identifier module. The Identifier module in the standard JHOVE2 distribution is
a wrapped version of DROID (droid.sourceforge.net) using signature data from
the PRONOM format registry (www.nationalarchives.gov.uk/pronom).

 Dispatch to a format module associated with the source unit’s format for parsing,
feature extraction, and validation performed by a configurable Dispatcher
module.

 Rules-based assessment performed by a configurable Assessor module.

 For unitary source units (i.e. file or bytestream), optional message digesting
performed by a configurable Digester module. The set of digests to be calculated
is configurable, and may include any combination of:

• Adler-32
• CRC-32
• MD2, MD5
• SHA-1, SHA-256, SHA-384, SHA512

 If the source unit is an aggregate (i.e. directory or file set), aggregate-level
identification performed by a configurable Aggrefier module (“aggregate-
identifier”). If an aggregate format is identified, the source unit is dispatched to
the appropriate format module and the Assessor module.

o Dispatcher module. The Dispatcher module transfers control to a format module capable

of parsing, extracting features, and validating a formatted source unit. The Dispatcher
module in the standard JHOVE2 distribution is based on a user configurable map from
unique format identifiers (in the JHOVE2 namespace) to format module classes, which
must be found on the Java classpath. If a nested source unit is discovered by the format
module during parsing, the Characterizer module is recursively invoked. By definition,
the aggregate directory, file set, and clump source units all have nested child source units.
Non-aggregate file and bytestream source units may have nested children, for example, a
TIFF file with an embedded ICC profile and XMP metadata. Nested source units are
automatically recursively characterized.

o Displayer module. The displayer module displays characterization results in one of three

forms:

 JSON
 Text
 XML

The Text formatted results are in the form of property name/value pairs, where
indentation indicates the reportable nesting level.

<name>: <value>
...

If the show identifiers command line option is specified (-i) the form is modified to:

<name> [<identifier>]: <value>
...

The XML formatted results confirm to a JHOVE2-specific schema that is intended to be

JHOVE2 Architectural Overview Page 3 of 25

J

an intermediate form that can be converted by a stylesheet transformation into any
desired final form. The general form for schema is:

<?xml version=”1.0” encoding=”UTF-8” standalone=”yes”?>
<j2:jhove2 xmlns:j2=”http://jhove2.org/xsd/1.0.0”>
<j2:reportable>
 <j2:name>name</j2:name>
 <j2:identifier namespace=”namespace”>identifier</j2:identifier>
 <j2:properties>
 <j2:property>
 <j2:name>name</j2:name>
 <j2:identifier namespace=”namespace”>identifier</j2:identifier>
 <j2:value>value</j2:value>
 </j2:property>
 ...
 </j2:reportable>
 ...
</j2:property>

Since many formats define families of related sub-formats or profiles, an arbitrary number of
format profiles can be registered with a format module. (Note that for JHOVE2 purposes certain
aggregate entities such as directories and files sets are considered formats in their own right. An
aggregate entity is processed by independently characterizing each of its subsidiary components
and then trying to identify any recognizable aggregate formats.) The standard JHOVE2
distribution includes format modules and profiles for:

 Clump
 dBASE
 Directory
 File set
 ICC
 JPEG 2000 JP2 (ISO/IEC 15444-1) and JPX (ISO/IEC 15444-2)
 PDF 1.0 – 1.7 (ISO 32000-1), PDF-A (ISO 19005-1), and PDF-X (ISO 15930)
 SGML
 Shapefile
 TIFF 4.0 – 6.0, Class B, F, G, P, R, and Y, TIFF-FX, RFC 1314, TIFF/EP (ISO

 12234-2), TIFT/IT (ISO 12639), Exif (EITA CP-3451), GeoTIFF, and DNG
 UTF-8 ASCII
 WAVE
 XML BWF (EBU N22-1997)
 Zip

3 Object Modeling

JHOVE2 is implemented in Java J2SE 6. The major JHOVE2 conceptual entities are described and their
embodiment as Java interfaces and classes are summarized in the following sections. The general
modeling paradigm is to define entity behavior in terms of interfaces, to implement common utility
function applicable in general contexts in abstract classes, and to extend these to concrete classes for
specific contexts.

JHOVE2 characterization results are defined in terms of reportable properties, which are named, typed
values. These values can be of primitive or complex type.

JHOVE2 Architectural Overview Page 4 of 25

J

Figure 1 – JHOVE2 sequence diagram

3.1 Primitive types

JHOVE2 defines four primitive property types, each modeled by a concrete class:

• Digest. An algorithm-specific message digest.
• Duration. A unit of elapsed time.
• I8R. A namespace-typed identifier.
• Message. An error, warning, or informative message.

The class name “I8R” is used for the identifiers of reportable properties and other JHOVE2 entities; the
name “Identifier” is reserved for the interface implemented by identification modules.

3.1.1 Digest

A JHOVE2 digest is an algorithm-specific message digest value.

package org.jhove2.core
public class Digest
 implements Comparable<Digest>
{
 public enum Algorithm {
 Adler32, CRC32, MD2, MD5, SHA1, SHA256, SHA384, SHA512
 }
 public Digest(String value, Algorithm algorithm);

 public Algorithm getAlgorithm();
 public String getValue();
 public String toString();
}

JHOVE2 Architectural Overview Page 5 of 25

J

The toString() method returns a representation of the digest value in the form:

[<algorithm>] <hex-encoded-value>

3.1.2 Duration

A JHOVE2 duration is a unit of elapsed time with millisecond accuracy.

package org.jhove2.core;
public class Duration {
 public Duration(long duration);

 public long getDuration();
 public String toString();
}

The toString() method returns a representation of the duration in the form:

<hh>:<mm>:<ss>.<msec>

The shortest reportable duration is 1 millisecond (00:00:00:001), regardless of whether the actual
duration is shorter.
3.1.3 Identifier

A JHOVE2 identifier is a namespace-typed value.

package org.jhove2.core;
public class I8R
 implements Comparable<I8R>
{
 public enum Namespace {
 AFNOR, AIIM, ANSI,..., JHOVE2,..., URI, URL, URN, UTI, OTHER
 }
 public Identifier(String value) {
 this(value, Namespace.JHOVE2);
 }
 public Identifier(String value, Namespace namespace);

 public Namespace getNamespace();
 public String getValue();
 public String toString();
}

The class name I8R is used since Identifier is in alternative use as the interface defining the behavior
of the Identifier module.

The toString() method returns a representation of the identifier in the form:

[<namespace>] <value>

JHOVE2 Architectural Overview Page 6 of 25

J

Every JHOVE2 entity, property, and format is given a unique formal identifier in the JHOVE2
namespace. This namespace uses the “info” URI identifier scheme, leading to identifiers of the general
form:

info:jhove2/<function>/<specific>

where <function> describes a high-level functional category and <specific> describes a specific
item within that category. The four defined identifier functions are:

• reportable. An identifier for an entity encapsulating one or more reportable properties. The
specific portion of a reportable identifier is based on the package-qualified name of the class
embodying the reportable with periods (.) replaced by slashes (/), e.g.
info:jhove2/reportable/org/jhove2/core/JHOVE2.

• property. An identifier for a reportable property. The specific portion of a property identifier
is the concatenation of the package-qualified name of the enclosing reportable and the property
name, e.g. info:jhove2/property/org/jhove2/core/JHOVE2/DateTime.

• message. An identifier for a reportable message. The specific portion of the property identifier
is the concatenation of the package-qualified name of the enclosing reportable and the message
name, e.g. info:jhove2/message/org/jhove2/module/format/utf8/UTF8Module/
ByteOrderMark.

• format. An identifier for a format. The specific portion of a format identifier is based on the
format’s common name, e.g. info:jhove2/format/utf-8.

3.1.4 Message

A JHOVE2 message is a property drawing notice to a specific unanticipated or unexpected condition or
event. A message can be generated in one of two contexts:

• Process. A message documenting an unanticipated condition arising from the process of
characterization, for example a file not found exception.

• Object. A message documenting an unexpected condition in the examined source unit, for
example, a validation error.

A message can have one of three severities:

• Error. A message about a terminal condition generally requiring some remedial action or
reaction by the user.

• Warning. A message about a condition that may requiring some further action by the user.

• Informative. A informative message requiring no further action.

package org.jhove2.core;
public class Message {
 public enum Context {
 Process,
 Object

 }
 public enum Severity {
 Error,
 Warning,
 Info

JHOVE2 Architectural Overview Page 7 of 25

J

 }
 public Message(Context context, Severity severity, String message);

 public Context getContext();
 public String getMessage();
 public Severity getSeverity();
 public String toString();
}

The toString() method returning a String of the general form:

[<context>/<severity>] <message>

3.2 Complex types

JHOVE2 defines a number of complex property types, which are aggregate containers of reportable
properties.

3.2.1 Reportable

The fundamental JHOVE2 complex type is the reportable. A reportable is a named container of
properties. A reportable has two types of names:

• A short descriptive name based on the simple, that is, non-package-qualified, name of the
embodying class; and

• A formal identifier in the JHOVE2 namespace based on the package-qualified class name.

info:jhove2/reportable/<package-path>/<name>

Thus, the Agent reportable embodied by the class org.jhove2.core.Agent has the descriptive
name “Agent” and the identifier “info:jhove2/reportable/org/jhove2/core/Agent”.

Reportables are declared by implementing the Reportable marker interface.

package org.jhove2.core;
public interface Reportable {}

A reportable defines its properties by marking their accessor methods with the
“@ReportableProperty” annotation. This annotation has three arguments:

• order. The ordinal position of the property, relative to all reportable properties, used when the
reportable is displayed;

• value. A brief description of the property; and

• ref. An optional reference to external documentation related to the property.

A reportable property may be annotated in an interface implemented by the reportable or an abstract or
concrete class extended by or embodying the reportable.

Like reportables, each property has two names:

• A short descriptive name based on its accessor method; and

JHOVE2 Architectural Overview Page 8 of 25

J

• A unique identifier in the JHOVE2 namespace.

Thus Name property of the Agent reportable has the descriptive name “Name” and the identifier
“info:jhove2/property/org/jhove2/core/Agent/Name”, as defined by:

package org.jhove2.core;
public class Agent
 implements Reportable
{
 @ReportableProperty(order=1, value=”Agent name.”)
 public String getName();
}

Most major JHOVE2 components implement or extend the Reportable interface (see Figure 2).

Figure 2 – Reportable object modeling

3.2.2 Temporal

A JHOVE2 temporal is a reportable that performs some process in a given amount of elapsed time.

package org.jhove2.core;
public interface Temporal
 extends Reportable
{
 @ReportableProperty(“Elapsed time, in milliseconds”)
 public Duration getElapsedTime();

 public void setStartTime();

JHOVE2 Architectural Overview Page 9 of 25

J

 public void setRestartTime();
 public void setEndTime();
}

A temporal reportable can accumulate its time in an arbitrary number of independent durations. The first
duration is bracketed by invocations of the setStartTime()/setEndTime() methods; subsequent
durations are bracketed by the setResetTime()/setEndTime() methods.

3.2.3 Product

A JHOVE2 product is a reportable that is independently distributable and configurable.

package org.jhove2.core;
public interface Product
 extends Reportable
{
 public Product(String version, String release, String rights);
 @ReportableProperty(order=4, value=”Product developers.”)
 public List<Agent> getDevelopers();

 @ReportableProperty(order=1, value=”Product name.”)
 public String getName();

 @ReportableProperty(order=6, value=”Product informative note.”)
 public String getNote();

 @ReportableProperty(order=3, value=”Product release date.”)
 public String getReleaseDate();

 @ReportableProperty(order=5, value=”Product rights statement.”)
 public String getRightsStatement();

 @ReportableProperty(order=2, value=”Product version identifier.”)
 public String getVersion();
}
public abstract class AbstractProduct
 implements Product;

3.2.4 Agent

A JHOVE2 agent is a reportable that represents an individual or corporate agent. Agents can be one of
two types:

• Corporate. A institutional or organizational agent.
• Individual. An individual human agent.

package org.jhove2.core;
public class Agent
 implements Reportable
{
 public Type {
 Corporate,
 Individual
 }

JHOVE2 Architectural Overview Page 10 of 25

J

 public Agent(String name, Type type);

 @ReportableProperty(order=4, value=”Agent postal address.”)
 public String getAddress();

 @ReportableProperty(order=3, value=”Agent affiliation.”)
 public Agent getAffiliation();

 @ReportableProperty(order=7, value=”Agent email address.”)
 public String getEmail();

 @ReportableProperty(order=6, value=”Agent fax number.”)
 public String getFax();

 @ReportableProperty(order=1, value=”Agent name.”)
 public String getName();

 @ReportableProperty(order=9, value=”Agent informative note.”)
 public String getNote();

 @ReportableProperty(order=5, value=”Agent telephone number.”)
 public String getTelephone();

 @ReportableProperty(order=2, value=”Agent type.”)
 public Type getType();

 @ReportableProperty(order=8, value=”Agent URI.”)
 public String getURI();
}

3.2.5 Document

A JHOVE2 document is a reportable that represents a specification document. A document is classified
with regard to its intention, that is, the degree of authority it carries; and its type.

package org.jhove2.core;
public class Document
 implements Reportable
{
 public enum Intention {
 Authoritative,
 Informative,
 Speculative,
 Other,
 Unknown
 }
 public enum Type {
 Article, Codebook,..., Other, Unknown
 }
 public Document(String author, String title, Type type,
 Intention intention);

 @ReportableProperty(order=1, value=”Document author or authors.”)
 public String getAuthor();

 @ReportableProperty(order=5, value=”Document publication date.”)

JHOVE2 Architectural Overview Page 11 of 25

J

 public String getDate();

 @ReportableProperty(order=3, value=”Document edition.”)
 public String getEdition();

 @ReportableProperty(order=6, value=”Document formal identifiers.”)
 public List<Identifier> getIdentifiers();

 @ReportableProperty(order=4, value=”Document intention.”)
 public Intention getIntention();

 @ReportableProperty(order=8, value=”Document informative note.”)
 public String getNote();

 @ReportableProperty(order=4, value=”Document publisher or publishers.”)
 public String getPublisher();

 @ReportableProperty(order=2, value=”Document title.”)
 public String getTitle();

 @ReportableProperty(order=7, value=”Document type.”)
 public Type getType();
}

3.2.6 Format

A JHOVE2 format is a reportable that represents a format. A format is classified with regard to its
ambiguity, that is, the degree to which there is clear community consensus on the interpretation of the
formats normative requirements; and its type.

package org.jhove2.core;
public class Format
 implements Reportable
{
 public enum Ambiguity {
 Ambiguous, Unambiguous
 }
 public enum Type {
 Family, Format
 }
 public Format(String name, I8R identifier, Type type,
 Ambiguity ambiguity);

 @ReportableProperty(order=5, value=”Format alias identifiers.”)
 public Set<Identifier> getAliasIdentifiers();

 @ReportableProperty(order=6, value=”Format alias names.”)
 public Set<String> getAliasNames();

 @ReportableProperty(order=8, value=”Format ambiguity.”)
 public Ambiguity getAmbiguity();

 @ReportableProperty(order=9, value=”Format caveats.”)
 public String getCaveats();

JHOVE2 Architectural Overview Page 12 of 25

J

 @ReportableProperty(order=2, value=”Format canonical identifier.”)
 public I8R getIdentifier();

 @ReportableProperty(order=1, value=”Format canonical name.”)
 public String getName();

 @ReportableProperty(order=10, value=”Format informative note.”)
 public String getNote();

 @ReportableProperty(order=7, value=”Format specification documents.”)
 public List<Document> getSpecifications();

 @ReportableProperty(order=4, value=”Format type.”)
 public Type getType();

 @ReportableProperty(order=3, value=”Format version.”)
 public String getVersion();
}

3.2.7 Format identification

A JHOVE2 format identification is a reportable that represents a presumptive identification of a format
based on some identification strategy embodied by the Identification module. All format identifications
are associated with the process used to perform the identification and a level of confidence about the
identification. Confidence levels are based on the union of those defined by DROID
(droid.sourceforge.net) and the DSpace format identification framework
(wiki.dspace.org/index.php/BitstreamFormat_Renovation)..

package org.jhove2.core;
public class FormatIdentification
 implements Reportable, Comparable<FormatIdentification>
{
 public enum Confidence {
 Negative,
 Tentative,
 Heuristic,
 PositiveGeneric,
 PositiveSpecific,
 Validated
 }
 public FormatIdentification(Product process, Confidence confidence,
 Format format);

 @ReportableProperty(order=2, value=”Level of confidence.”)
 public Confidence getConfidence();

 @ReportableProperty(orde=3, value=”Presumptively-identified format.”)
 public Format getPresumptiveFormat();

 @ReportableProperty(order=1, value=”Identifying process.”)
 public Product getProcess();

 public List<Source> getSources();
}

JHOVE2 Architectural Overview Page 13 of 25

http://droid.sourceforge.net/
http://wiki.dspace.org/index.php/BitstreamFormat_Renovation

J

3.3 Source units

A JHOVE2 source unit is a temporal reportable that is the unit of characterization. Source units are
classified as being either unitary or aggregate. The following source units are defined (see Figure 3):

• File set [aggregate].
• Directory [aggregate].
• Clump [aggregate].
• File [unitary].
• Bytestream [unitary].
• URL [unitary].
• Zip directory entry [aggregate].
• Zip file entry [unitary].

Note that source units are defined with a granularity both larger than a file (i.e. file set, directory, clump)
and smaller than a file (i.e. bytestream). Source units can be arbitrarily nested. Aggregate source units
can be the structural parent of files or other aggregates; unitary source units can be the structural parent of
bytestreams. Nested source units encountered during the parsing of unitary source units are automatically
recursively characterized.

Figure 3 – Source unit object modeling

JHOVE2 Architectural Overview Page 14 of 25

J

A unitary source unit can expose its content as:

• Java File [java.io.File].
• Java InputStream [java.io.InputStream].
• JHOVE2 Input.

If there is no pre-existing file backing the source unit, a temporary file is automatically generated.

A JHOVE2 input is a reportable that provides uniform access the contents of source units in terms of the
Java buffered I/O package [java.nio]

A factory class is available to instantiate new source units.

package org.jhove2.core.source;
public interface Source
 extends Temporal
{
 public void close();
 public void deleteChildSource(Source child);

 @ReportableProperty(“Child source units.”)
 public List<Source> getChildSources();
 public File getFile();
 public Input getInput(int bufferSize, Type bufferType, ByteOrder order);
 public InputStream getInputStream();

 @ReportableProperty(value=”Modules that processed the source unit.”)
 public List<Module> getModules();
 public int getNumModules();
 public void setChildSource(Source child);
 public void setModule(Module module);
}
public abstract class AbstractSource
 implements Source;
public interface NamedSource
 extends Source
{
 @ReportableProperty(“Source unit name.”)
 pubic String getName();
}
public interface AggregateSource
 extends Source;
public class ClumpSource
 extends AbstractSource
 implements AggregateSource;
public class DirectorySource
 extends AbstractSource
 implements AggregateSource, NamedSource;
public class FileSetSource
 extends AbstractSource
 implements AggregateSource;
public class FileSource
 extends AbstractSource
 implements NamedSource;
public class URLSource

JHOVE2 Architectural Overview Page 15 of 25

J

 extends AbstractSource;
public class ZipDirectorySource
 extends AbstractSource
 implements AggregateSource, NamedSource;
public class ZipEntrySource
 extends AbstractSource
 implements NamedSource;
public abstract class SourceFactory {
 public static Source getSource(String pathname);
 public static Source getSource(File file);
 public static Source getSource(JHOVE2 jhove2, ZipFile zipFile,
 ZipEntry entry);
}

Once all processing has been completed on a source unit, it most be closed [close()] in order to release
all open system resources.

3.4 Input

A JHOVE2 input is a reportable that provides uniform access to the contents of source units in terms of
the Java buffered I/O package [java.nio].

Inputs can be defined with three underlying buffer types:

• Direct.
• Non-direct.
• Memory mapped.

An input can expose its content as:

• Java File [java.io.File].
• Java InputStream [java.io.InputStream].

A factory class is available to instantiate new source units.

package org.jhov2.core.io;
public interface Input
 Reportable
{
 public enum Type {
 Direct, NonDirect, MemoryMapped
 };
 public final static int EOF = -1;

 public void close();
 public ByteBuffer getBuffer();
 public int getBufferSize();
 public byte [] getByteArray();
 public ByteOrder getByteOrder();
 public File getFile();
 public InputStream getInputStream();
 public int getMaxBufferSize();
 public long getPosition();
 public long getSize();
 public void setByteOrder(ByteOrder order);

JHOVE2 Architectural Overview Page 16 of 25

J

 public void setPosition(long position);

 public byte readSignedByte();
 public int readSignedInt();
 public short readSignedShort();
 public long readSignedLong();
 public short readUnsignedByte();
 public int readUnsignedShort();
 public long readUnsignedInt();
}
public abstract class AbstractInput
 implements Input;
public class DirectInput
 extends AbstractInput;
public class NonDirectInput
 extends AbstractInput;
public class MappedInput
 extends AbstractInput;
public abstract class InputFactory {
 public static Input getInput(File file, int bufferSize, Type type);
}

Once all processing has been completed on a source unit, it most be closed [close()] in order to release
all open system resources.

3.5 Modules

A JHOVE2 module is a temporal product reportable.

package org.jhove2.module;
public interface Module
 extends Product, Temporal
{
 @ReportableProperty(“External tool wrapped by the module.”)
 public Product getWrappedProduct();
}
public abstract class AbstractModule
 extends AbstractProduct
 implements Module
{
 public AbstractModule(String version, String release, String rights);
}

Modules embody specific JHOVE2 processing capabilities as defined by appropriate interfaces (see
Figure 4).

3.5.1 Assessment modules

JHOVE2 assessment modules perform assessments of source units based on prior characterization
information and locally-configured assessment assertions. [TBD…]

package org.jhove2.module.assess;
...

JHOVE2 Architectural Overview Page 17 of 25

J

3.5.2 Characterization modules

JHOVE2 characterization modules encapsulate specific characterization strategies.

package org.jhove2.module.characterize;
public interface Characterizer
 extends Module
{
 public void characterize(JHOVE2 jhove2, Source source);
}
public class CharacterizerModule
 extends AbstractModule
 implements Characterizer;

The default strategy of the characterization module supplied in the standard JHOVE2 distribution is:

• Unitary identification of the source unit.
• Dispatch of the source unit to an appropriate format module for feature extraction, and validation,

with appropriate recursive characterization of any nested source units that are encountered.
• Optional message digesting of unitary source units.
• Aggregate identification of aggregate source units with appropriate recursive characterization.

Figure 4 – Module object modeling

3.5.3 Digesting modules

JHOVE2 Architectural Overview Page 18 of 25

J

JHOVE2 digesting modules calculate message digests.

package org.jhove2.module.digest;
public interface Digester
 extends Module
{
 public void digest(JHOVE2 jhove2, Source source);
 @ReportableProperty(“Get message digests.”)
 public Set<Digest> getDigests();
}
public class DigesterModule
 extends AbstractModule
 implements Digester;

The default digesting module supplied in the standard JHOVE2 distribution can calculate digests for any
combination of the following algorithms:

• Adler-32
• CRC-32
• MD2, MD5
• SHA-1, SHA-256, SHA-384, SHA-512

3.5.4 Dispatching modules

JHOVE2 dispatching modules transfer control to an explicitly provided module or the module associated
with a format identifier.

package org.jhove2.module.dispatch;
public interface Dispatcher
 extends Module
{
 public Module dispatch(JHOVE2 jhove2, Source source, I8R identifier);
 public Module dispatch(JHOVE2 jhove2, Source source, Module module);
}
public class DispatcherModule
 extends AbstractModule
 implements Dispatcher;

The default dispatching module supplied in the standard JHOVE2 is initialized with a set of mappings
defined by the dispatcher.properties file. Each line of this file contains a mapping from a I8R
format identifier to the Spring bean name of a format module, for example:

info\:jhove2/format/utf-8 UTF8Module

(The colon in the identifier string must be escaped to conform with standard Java property file semantics.)

3.5.5 Displayer modules

JHOVE2 displayer modules present formatted results to an output print stream.

package org.jhove2.module.display;
public interface Displayer
 extends Module

JHOVE2 Architectural Overview Page 19 of 25

J

{
 public void startDisplay(PrintStream out, int level);
 public void startReportable(PrintStream out, int level, String name,
 I8R identifier, int order);
 public void startCollection(PrintStream out, int level, String name,
 I8R identifier, int size, int order);
 public void displayProperty(PrintStream out, int level, String name,
 I8R identifier, Object value, int order);
 public void endCollection(PrintStream out, int level, String name,
 I8R identifier, int size);
 public void endReportable(PrintStream out, int level, String name,
 I8R identifier);
 public void endDisplay(PrintStream out, int level);
}

For purposes of display, a collection is a non-scalar property such as a list or a set. The level argument
indicates the nesting level of the various reportables, collections, and properties. The order argument
indicates the ordinal position of the entity (reportable, collection, property) relative to its siblings.

The default displayer modules supplied in the standard JHOVE2 distribution can provide results in the
following formats:

• JSON
• Text (i.e. name/value pairs; default)
• XML

By default, all characterization properties are displayed. However, the visibility of individual properties
can be controlled by setting directives in the displayer.properties file.

<property-identifier> <display-directive>

where <property-identifier> is the unique I8R identifier for a reportable, collection , or property;
and <display-directive> is a directive that is evaluated with respect to the property value to
determine whether or not the property is displayed:

• Never
• IfFalse
• IfTrue
• IfZero
• IfNonZero
• IfNegative [display if value < 0]
• IfPositive [display if value > 0]
• IfNonNegative [display if value ≥ 0]
• IfNonPositive [display if value ≥ 0]
• Always

3.5.6 Format modules

JHOVE2 format modules are able to parse, extract features from, and validate formatted source units. For
JHOVE2 purposes, file sets, directories, and clumps are all considered to be formats.

Since formats are often defined in terms of related sets of formats, JHOVE2 formats are classified as:

JHOVE2 Architectural Overview Page 20 of 25

J

• Format families.
• Formats or format profiles.

Format modules are generally defined at the level of a format family. An arbitrary number of format
profiles can be registered with a format module. All of these profiles are automatically invoked following
the processing of a source by a format module.

package org.jhove2.module.format;
public interface FormatModule
 extends Module
{
 @ReportableProperty(“Format module format.”)
 public Format getFormat();

 @ReportableProperty(“Format module format profiles.”)
 public List<FormatProfile> getProfiles();
 public void setProfile(FormatProfile profile);
}
public abstract class AbstractFormatModule
 extends AbstractModule
 implements FormatModule;

3.5.6.1 Parsing format modules

JHOVE2 parsing format modules are capable of parsing and extract features from the contents of
formatted source units.

package org.jhove2.module.format;
public interface Parser {
 public long parse(JHOVE2 jhove2, Source source);
}

An aggregate source unit is parsed by iteratively characterizing each of its child source units. During the
parsing of unitary source units, additional nested source units may be encountered; if so, they are
automatically recursively characterized.

3.5.6.2 Validating format modules

JHOVE2 validating format modules are capable of validating formatted source units.

package org.jhove2.module.format;
public interface Validator {
 public enum Validity {
 True, False, Undetermined
 }
 public Validity validate(JHOVE2 jhove2, Source source);
 @ReportableProperty(“Validation status.”)
 public Validity isValid();
}

JHOVE2 Architectural Overview Page 21 of 25

J

3.5.6.3 Format profiles

JHOVE2 format profiles are modules that can validate profiles of a format family. In general format
profiles are expected to implement the Validator interface, but not the Parser interface. Validation is
performed on the basis of the pre-existing characterization information.

All of the format profiles registered with a given format module are automatically invoked following the
conclusion of that module’s processing of a source unit.

package org.jhove2.module.format;
public interface FormatProfile
 extends Module
{
 @ReportableProperty(“Format profile format.”)
 public Format getFormat();
 public void setFormatModule(FormatModule module);
}

3.5.7 Identification modules

JHOVE2 identification modules make presumptive assertions about the formats of examined source units
on the basis of suggestive hints and intrinsic internal and external signatures. Identification can occur at
two levels:

• Unitary. Unitary identification is performed relative to file and bytestream source units.
• Aggregate. Aggregate identification is performed relative to file set and directory source units.

Unitary identification is defined by the following interface and module:

package org.jhove2.module.identify;
public interface Identifier
 extends Module
{
 public Set<FormatIdentification> identify(JHOVE2 jhove2, Source source);

 @ReportableProperty(“Presumptive format identifications.”)
 public Set<FormatIdentification> getPresumptiveFormats();
}
public class IdentifierModule
 extends AbstractModule
 implements Identifier;

Aggregate identification is defined by the following interface and module:

package org.jhove2.module.identify;
public interface Identifier
 extends Module
{
 public Set<FormatIdentification> identify(JHOVE2 jhove2,
 AggregateSource source);
 @ReportableProperty(“Presumptive format identifications.”)
 public Set<FormatIdentification> getPresumptiveFormats();
}
public class AggrefierModule

JHOVE2 Architectural Overview Page 22 of 25

J

 extends AbstractModule
 implements Aggrefier;

3.6 Spring instantiation

All Spring function is consolidated into a single class, which exposes methods for dynamically
instantiating and initializing JHOVE2 reportables, including all dependencies, by class type and name.

package org.jhove2.core.config;
public class Configure {
 public static <R> R getReportable(Class<? extends Reportable> cl,
 String name);
}

The class argument specifies the class of, a superclass of, or an interface implemented by the named
reportable. The use of a generic method obviates the need for a cast in the invoking context, for example:

FormatModule utf8 = Configure.getReportable(FormatModule.class,
 “UTF8Module”);

compiles and executes cleanly without an unchecked cast exception.

4 Distribution Package

The JHOVE2 project uses the Maven for its build management (maven.apache.org). The project structure
is:

jhove2/
 doc/
 index.html
 ...
 jhove2.bat
 jhove2.sh
 lib/
 *.jar
 src/
 main/
 java/
 org/
 jhove2/
 ...
 resources/
 config/
 jhove2-config.xml
 properties/
 dispatcher.properties
 displayer.properties
 unicode/
 c0control.properties
 c1control.properties
 codeblock.properties
 test/
 ...

JHOVE2 Architectural Overview Page 23 of 25

http://maven.apache.org/

J

The “doc/” directory contains the Javadoc documentation; the “lib/” directory contains all JHOVE2 jar
files; the “src/” directory contains source code and configuration files; and the “test/” directory holds
sample data.

The files “jhove2.bat” and “jhove2.sh” are DOS and Bourne shell invocation scripts, respectively.
Both of these files must be modified during installation to define the “JHOVE2_HOME” directory and
the command path for the java command, for example:

SET JHOVE2_HOME=”C:\Program Files\jhove2”
SET JAVA=”C:\Program Files\java\jre1.6.0_15\bin\java

JHOVE2_HOME=/usr/jhove2
JAVA=/usr/bin/java

4.1 Package namespaces

The JHOVE2 interfaces and classes exist within a structured package hierarchy.

package org.jhove2;
package org.jhove2.annotation; // JHOVE2 annotations
package org.jhove2.app; // JHOVE2 application classes
package org.jhove2.core; // JHOVE2 core classes
package org.jhove2.core.config; // JHOVE2 instantiation classes
package org.jhove2.core.io; // JHOVE2 core I/O classes
package org.jhove2.core.source; // JHOVE2 core source units
package org.jhove2.core.util; // JHOVE2 core utility classes
package org.jhove2.module; // JHOVE2 modules
package org.jhove2.module.assess; // Assessment module
package org.jhove2.module.characterize; // Characterization module
package org.jhove2.module.digest; // Message digesting module
package org.jhove2.module.dispatch; // Dispatching module
package org.jhove2.module.display; // Display modules
package org.jhove2.module.format; // Format modules
package org.jhove2.module.identify; // Identification module

4.2 Configuration

JHOVE2 offers extensive opportunities for local configuration. Configuration information is defined in
two forms:

• Spring XML configuration files
• Java properties files

jhove2/
 src/
 main/
 resources/
 config/
 jhove2-config.xml
 properties/
 dispatcher.properties
 displayer.properties

JHOVE2 Architectural Overview Page 24 of 25

J

 unicode/
 c0control.properties
 c1control.properties
 codeblock.properties

The “jhove2-config.xml” file contains the definitions of all JHOVE2 dynamically instantiated
components in terms of Spring beans. The “dispatcher.properties” file contains the format
identifier-to-format module mappings used by the dispatcher module. The “displayer.properties”
file contains property display directives. The “c0control.properties” and
“c1control.properties” define the Unicode C0 and C1 control characters. The
“codeblock.properties” file defines the Unicode code blocks.

5 Adding a New Format Module

The general steps to add a new format module to the JHOVE2 framework include:

• Assign a unique format identifier in the JHOVE2 namespace.
info:jhove2/format/format

• Define a singleton format object to be referenced by the module.
• Create the module

o Determine the name and type of all properties reported by the module.
o The module will implement the Module or FormatModule interfaces and any specific

behavioral interfaces appropriate for the module’s processing capability.
• Make the module available on the Java classpath
• Add the module to the Spring configuration file “jhove2-config.xml”, defining a module

bean, a format bean, and a format identifier bean.
<bean name=”FormatModule” class=”package.class” scope=”prototype”>
</bean>

• Add the module to the dispatcher map properties file “dispatcher.properties”

info\:jhove2/format/format package.class

JHOVE2 Architectural Overview Page 25 of 25

